PYTHON PROGRAM TO MERGE 3 NUMBER MATRIX IN NUMBERPYTHON

In this topic, we discuss how to easily merge 3 numpy matrix in numpy in Python programming.  Let’s explore how to merge 3 numpy matrix in numpy in python program.

Merge 3 NumPy Matrix

 

Table of contents :

  • Introduction
  • Program to Merge 3 numpy matrix
  • Output
  • Conclusion
Introduction to Merging NumPy Matrices :

NumPy is a powerful library for numerical computations in Python. One of its features is the ability to easily merge arrays (or matrices). Here’s how you can merge three matrices:

Importing the NumPy Library
Creating the Matrices
Concatenating the Matrices Vertically
Concatenating the Matrices Horizontally
Concatenating the Matrices Along a Specific Axis

Program to  Merge 3 NumPy Matrix :

 

import numpy as np

# Create sample matrices

matrix1 = np.array([[1, 2, 3,],[4, 5, 6]])

matrix2 = np.array([[7, 8, 9],[10, 11, 12]])

matrix3 = np.array([[13, 14, 15],[16, 17, 18]])

# Vertical concatenation

vertical_concat = np.vstack((matrix1, matrix2, matrix3))

print(“Vertical Concatenation:\n”, vertical_concat)

# Horizontal concatenation

horizontal_concat = np.hstack((matrix1, matrix2, matrix3))

print(“Horizontal Concatenation:\n”, horizontal_concat)

# Concatenation along a new axis

new_axis_concat = np.stack((matrix1, matrix2, matrix3), axis=0)

print(“New Axis Concatenation:\n”, new_axis_concat)

Output :

Vertical Concatenation:
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]
[13 14 15]
[16 17 18]]

Horizontal Concatenation:
[[ 1 2 3 7 8 9 13 14 15]
[ 4 5 6 10 11 12 16 17 18]]

New Axis Concatenation:
[[[ 1 2 3]
[ 4 5 6]]

[[ 7 8 9]
[10 11 12]]

[[13 14 15]
[16 17 18]]]

=== Code Execution Successful ===

Conclusion:

Merging three NumPy matrices can be easily achieved using ‘np.vstack’ for vertical stacking, ‘np.hstack’ for horizontal stacking, and ‘np.stack’ for adding a new axis, enabling flexible data manipulation

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top