Understanding Generalized Gamma Distribution
The generalized gamma distribution is a flexible probability distribution that extends the gamma and Weibull distributions. It is defined by three parameters: a shape parameter, another shape parameter, and a scale parameter. Python’s scipy library provides a function to generate and analyze this distribution.
Generating and Plotting Generalized Gamma Distribution
Step-by-Step Explanation with Code:
import numpy as np import matplotlib.pyplot as plt from scipy.stats import gengamma
Import NumPy for numerical operations, Matplotlib for plotting, and the necessary function from SciPy.
a, c = 2.0, 3.0
Define shape parameters that control the shape of the distribution.
x = np.linspace(0, 5, 100)
Generate 100 evenly spaced values between 0 and 5 to serve as the x-axis.
pdf_values = gengamma.pdf(x, a, c)
Compute the probability density function values for the given x values.
plt.plot(x, pdf_values, label=f'Generalized Gamma (a={a}, c={c})')
Plot the probability density function with a label indicating the parameters used.
plt.xlabel('x') plt.ylabel('Probability Density') plt.title('Generalized Gamma Distribution') plt.legend() plt.grid(True) plt.show()
Label the axes, add a title, enable the grid, and display the plot.
complete code:
import numpy as np import matplotlib.pyplot as plt from scipy.stats import gengamma a, c = 2.0, 3.0 x = np.linspace(0, 5, 100) pdf_values = gengamma.pdf(x, a, c) plt.plot(x, pdf_values, label=f'Generalized Gamma (a={a}, c={c})') plt.xlabel('x') plt.ylabel('Probability Density') plt.title('Generalized Gamma Distribution') plt.legend() plt.grid(True) plt.show()
Expected Output
A probability density function (PDF) plot for the Generalized Gamma distribution with a=2.0 and c=3.0.
Graph Output
A smooth curve representing the distribution. The shape of the curve depends on the parameters a and c.
- The x-axis represents the range of values.
- The y-axis represents the probability density.
- The curve rises, peaks, and then declines, showcasing the probability distribution.