AIM : Write a program to implement distance vector routing protocol.

THEORY: A distance-vector routing (DVR) protocol requires that a router inform its
neighbors of topology changes periodically. Historically known as the old ARPANET
routing algorithm (or known as Bellman-Ford algorithm).

In Bellman Ford , each router maintains a Distance Vector table containing the distance
between itself and ALL possible destination nodes. Distances,based on a chosen metric,
are computed using information from the neighbors’ distance vectors.

Distance Vector Algorithm —
1. A router transmits its distance vector to each of its neighbors in a routing

packet. 2. Each router receives and saves the most recently received distance vector
from each of its neighbors.
3. A router recalculates its distance vector when:
o It receives a distance vector from a neighbor containing different
information than before.

o It discovers that a link to a neighbor has gone down.

Advantages of Distance Vector routing —
e [t is simpler to configure and maintain than link state routing.

Disadvantages of Distance Vector routing —

e It is slower to converge than link state.

e [t is at risk from the count-to-infinity problem.

e [t creates more traffic than link state since a hop count change must be
propagated to all routers and processed on each router. Hop count updates take

place on a periodic basis, even if there are no changes in the network topology,

so bandwidth-wasting broadcasts still occur.



IMPLEMENTATION:
#include <bits/stdc++.h>

using namespace std;

, int V, int E, int

int Bellman Ford(int G[100][100]

edge[100] [2]) |
int i,u,v,k,distance[100],S,flag=1;

for (1i=0;1<V;i++)

distance[i] = 1000 ;

LL I

cout<<"\nEnter source : ;

cin>>S;
distance[S-1]=0;

for (i=0;1i<Vv-1;1i++){
for (k=0; k<E; k++) {
u = edgelk][0];
v = edge[k][1];
if (distance[u]+G[u] [V]

distance[v] = distancelu] + G[u][Vv];

< distance[Vv])

for (k=0; k<E; k++) {
u = edgelk][0];
v = edgelk][1] ;
if (distance[u]l+G[u] [v] < distance[v])
0

flag = ;

if(flag)

for (i=0;1i<V; i++)
cout<<"\nDistance from source "<<S<<" to vertex

"<<i+1<<" is "<<distance[i]:

return flag;



int main ()

{
int V,edge[100][2],G[100][100],1i,]J,k=0;

\AJ

cout<<"Enter no. of vertices: ";
cin>>V;
cout<<"Enter graph in matrix form:\n";
for (i=0;1i<V;i++)
for (3=0;3<V; j++)
{
cin>>G[1i] [J];
1£(G[1][J]1=0)
edge[k] [0]=1,edge[k++] [1]=3;

if (Bellman Ford(G,V,k,edge))

cout<<"\nNo negative weight cycle exists\n";

return 0;

OUTPUT:

VEFT1CRs
in MATr X

Enter source

;tance from soi
ance ftror
ance From
ance trom NI
egative welight

LEARNING : In this program, we learnt about the distance vector routing protocol.
This protocol makes use of Bellman ford algorithm.



