Here we analyze the Heart Attack rate, at which age Heart Attack is high and low risk
Step:-1
First, we import the necessary libraries after that, we import the dataset
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns import os import plotly.express as px
HEART_ATTACK = pd.read_csv("HEART_ATTACK.csv") HEART_ATTACK.shape HEART_ATTACK
print(list(HEART_ATTACK.columns))
Step:-2
Now we see the output
HEART_ATTACK['output'].value_counts()
Here male denoted as 1 and female denoted as 0
sns.set_theme(context="notebook",style="dark",font_scale=1) plt.style.use("seaborn") plt.figure(figsize=(10,5)) c=sns.countplot(data=HEART_ATTACK,x='output',palette='Set2') plt.show()
Now we see the male rate is higher than female
Step:-3
head(): This helps to see a few sample rows of the data
HEART_ATTACK.head()
corr(): This helps to find the pairwise correlation of all columns in the data frame
HEART_ATTACK.corr()
Now we plot the heat map
plt.figure(figsize=(40,20)) sns.heatmap(HEART_ATTACK.corr(),annot=True)
After plotting the heat map we plot pair plot
HEART_ATTACK.sex.value_counts()
Step:-4
Now we count how many are male and female effect by Heart Attack
HEART_ATTACK.sex.value_counts()
Now we plot Heart Attack Frequency for sex
pd.crosstab(HEART_ATTACK.age, HEART_ATTACK.sex).plot(kind="bar", figsize=(10,6), color=["salmon", "lightblue"]) plt.xlabel("age") plt.ylabel("amount") plt.legend(["male", "female"]) plt.xticks(rotation=90);
S=HEART_ATTACK["sex"].value_counts().reset_index() px.pie(S,names="index",values="sex")
here we see male are 68.3% and female are 31.7% effect by Heart Attack
Step:-5
Now we see the type of chest pain with the number of patients
Chest_pain=HEART_ATTACK["cp"].value_counts().reset_index() Chest_pain
plt.figure(figsize=(20,5)) sns.barplot(x=Chest_pain["index"],y=Chest_pain["cp"]) plt.xlabel("type") plt.ylabel("digit") plt.show()
Step:-6
At which age Heart Attack is high and low risk
v=pd.crosstab(HEART_ATTACK["age"],HEART_ATTACK["output"]).reset_index() v.columns=["age","low_risk","high_risk"] v
Now we plot at which age high and low risk
px.bar(v,v["age"],v["low_risk"],title="RISK OF LOW HEART-ATTACK WITH AGE")
px.bar(v,v["age"],v["high_risk"],title="RISK OF HIGH HEART-ATTACK WITH AGE")
Step:-
Here we plot the blood pressure with age
plt.figure(figsize=(20,10)) sns.barplot(y="trtbps",x="age",data=HEART_ATTACK) plt.title("BLOOD PRESSURE WITH AGE") plt.xlabel("age") plt.ylabel("B.P") plt.show()
Here we plot the cholesterol with age
plt.figure(figsize=(20,10)) sns.barplot(y="chol",x="age",data=HEART_ATTACK) plt.title("CHOLESTROL LEVEL WITH AGE") plt.xlabel("age") plt.ylabel("C L") plt.show()
Here we plot the Heart rate with age
plt.figure(figsize=(20,10)) sns.barplot(y="thalachh",x="age",data=HEART_ATTACK) plt.title("HEART RATE WITH AGE",fontsize=20) plt.xlabel("age") plt.ylabel("rate") plt.show()
Submitted by Subhojit Jalal (Subhojit1234)
Download packets of source code on Coders Packet
Comments