This project helps to convert a number that is in decimal or binary or octal or hexadecimal to any other type.

First, understand the different type of standard number systems:

**1.) Decimal: **Decimal numbers are usual numbers which we use in our day-to-day life. The base of the decimal number system is 10 i.e. 0 to 9.

**2.) Binary: **In the binary number system there are only two digits 0 and 1. Since there are only two numbers so its base is 2.

**3.) Octal: **Octal number system has eight numbers from 0 to 7. The base of the number system is 8.

**4.) Hexadecimal: **In the hexadecimal number system, there are 16 numbers from 0 to 9, and digits 10 to 15 are represented by A to F. The base of the hexadecimal number system is 16.

The project contains 12 cases in the program:

1.) **Decimal to Binary: **For Example, Convert 244 into a binary number.

Division of Decimal Number by 2 |
Quotient |
Remainder |
Binary |

244/2 |
122 |
0 |
0 (LSB) |

122/2 |
61 |
0 |
0 |

61/2 |
30 |
1 |
1 |

30/2 |
15 |
0 |
0 |

15/2 |
7 |
1 |
1 |

7/2 |
3 |
1 |
1 |

3/2 |
1 |
1 |
1 |

1/2 |
0 |
1 |
1 (MSB |

So the binary number of 244 is 11110100.

2.) **Decimal to Octal: **For Example, Convert 244 into an octal number.

Division of Decimal Number by 2 |
Quotient |
Remainder |
Octal |

244/8 |
30 |
4 |
4 (LSB) |

30/8 |
3 |
6 |
6 |

3/8 |
0 |
3 |
3 (MSB) |

So the octal number of 244 is 364.

3.) **Decimal to Hexadecimal: **For Example, Convert 244 into a hexadecimal number.

Division of Decimal Number by 2 |
Quotient |
Remainder |
Hexadecimal |

244/16 |
15 |
4 |
4 (LSB) |

15/16 |
0 |
15 |
15=F(MSB) |

So the hexadecimal number of 244 is F4.

4.) **Binary to Decimal: **For Example, Convert 11110100 into a decimal number.

11110100 => (1 × 2⁷) + (1 × 2⁶) + (1 × 2⁵) + (1 × 2⁴) + (0 × 2³) + (1 × 2²) + (0 × 2¹) + (0 × 2⁰) = 244

5.) **Binary to Octal: **First convert the binary number into a decimal number then convert the decimal number into an octal number.

6.) **Binary to Hexadecimal: **First convert the binary number into a decimal number then convert the decimal number into a hexadecimal number.

7.) **Octal to Binary: **First convert the octal number into a decimal number then convert the decimal number into a binary number.

8.) **Octal to Decimal: **For Example, Convert 364 into a decimal number.

364 => (3 × 8²) + (6 × 8¹) + (4 × 8⁰) = 244

9.) **Octal to Hexadecimal: **First convert the octal number into a decimal number then convert the decimal number into a hexadecimal number.

10.) **Hexadecimal to Binary: **First convert the hexadecimal number into a decimal number then convert the decimal number into a binary number.

11.) **Hexadecimal to Decimal: **For Example, Convert F4 into a decimal number.

F4 => (15 × 16¹) + (4 × 16⁰) = 244

12.) **Hexadecimal to Octal: **First convert the hexadecimal number into a decimal number then convert the decimal number into an octal number.

Submitted by Shiddhant Gupta (Shiddhant123)

Download packets of source code on Coders Packet

## Comments